ARR2016 Temporal Patterns for Urban Drainage and Flood-Modelling. Do We Need To Run Them All?

Glenn Ottrey

ARR 2016 Ensemble Approach

- 10 Temporal Patterns for each duration
 - 20% AEP 1 to 10
 - 10% and 5% AEP 11 to 20
 - 2% and 1% AEP 21 to 30
- Aim by running 10 patterns is to better understand the uncertainty associated with the temporal pattern
- How much variation is there between the patterns and resulting flood depths?
- Chose the average result median (rank 5 of 10) has been used

Why is this a challenge?

- 10x increase in run times for hydraulic models
- Complicates results processing significantly for some results
- If you could choose to do nine sensitivity runs, would you really do them all on temporal pattern?
- Can the median pattern be predicted?
 - Potential to reduce total model runtime
 - Assist in processing results if a single representative pattern for each duration can be chosen

Data available for this presentation

- 6 models for 1% AEP, all temporal patterns up to at least 3 hour
- 4 models also run for more frequent return periods
- Models spread around Melbourne (Southern Slopes Mainland), three in the north, one in the east and two in the south east.

How much variation is there between the 10 patterns?

- Overall?
- What about retarding basins?
- Can we predict the median pattern based on the hyetograph shape?
- Could the same set of patterns selected patterns approximate the median result in multiple catchments?

How would we choose the median temporal pattern?

Difference (m)

0.2

0.4

0.6

0.8

1

Difference (m)

(

0.2

0.4

0.6

0.8

1

Difference

-0.03 m

-0.018 m

-0.006 m

0.006 m

0.018 m

Difference

-0.03 m

-0.018 m

-0.006 m

0.006 m

0.018 m

Difference

-0.03 m

-0.018 m

-0.006 m

0.006 m

0.018 m

Difference

-0.03 m

-0.018 m

-0.006 m

0.006 m

0.018 m

Model D 1% AEP Difference between median and selected patterns

Model D 10% AEP Difference between median and selected patterns

Model K 1% AEP Peak Flood Depths (Medians)

1% AEP
Difference between median and selected patterns

20% AEP
Difference between median and selected patterns

20% AEP
Difference between median and selected patterns

Difference between median and selected patterns

Difference between median and alternative selected patterns

Statistics 1% AEP

		Mean	Difference -		
		difference	Standard Deviation	Maximum	Maximum
Model	AEP	(mm)	(mm)	underestimate (mm)	overestimate (mm)
Н	100y	2.3	3.6	-33	109
С	100y	1.1	3.1	-126	121
M	100y	3.6	18.9	-424	304
K	100y	5.9	10.0	-24	332
D	100y	1.6	4.3	-42	70
Р	100y	2.4	12.6	-141	428

Statistics 10% and 20% AEP

			Difference -		
		Mean	Standard	Maximum	Maximum
		difference	Deviation	underestimate	overestimate
Model	AEP	(mm)	(mm)	(mm)	(mm)
С	20%	0.4	4.2	-150	133
Н	20%	2.7	7.7	-59	88
K	20%	17.6	16.3	-113	99
M	20%	1.7	6.6	-78	154
С	10%	1.0	3.0	-27	85
D	10%	0.4	4.2	-42	36
Н	10%	1.6	3.4	-17	194
M	10%	0.5	3.4	-240	43

Which patterns best match the median results?

Duration	20% AEP	10% and 5%	2%, 1% and 0.5% AEP
		AEP	
10 min	1	16	26
15 min	8	17	28
30 min	6	18	28
60 min	6	18	28
120 min	9	17	25
180 min	4	15	28

Discussion

- Can chose one TP from each duration to match closely to the median result
- Appears to be fairly set of patterns consistent across 6 catchments tested
- Some areas of outliers in some models
 - have tended to be more on the conservative side (high flood level)
 - can also predict where these areas may be located (RB's and defacto RBs)

Discussion - Does it make sense?

- Don't want an extreme, want the middle
- Limited possible variation within a short time period for shorter storms
 - little value variation in storms under 60 minutes
 - Total rainfall depth more important impact of initial loss
- More variation possible in longer storms, would expect more variation
- Steeper catchments show more variation
 - less attenuation of runoff so flow patterns match temporal patterns more closely

Can we just run one TP?

- Yes, it is a valid estimate of the AEP flood (we did this for 30 years... all that work is not "wrong")
- Running more patterns will quantify the uncertainty better
- Consider running a front and back loaded pattern to understand the variability

Where should we put our effort?

- Initial loss (data hub data is low confidence and highly variable, particularly around Melbourne, between 8 mm and 32 mm west to east sides of the bay)
- Continuing loss (data hub data is low confidence)
- Climate change
- Future development

Finally

- All modelling is wrong
 - Aim to minimise by how much
 - The median (or mean) of the temporal patterns is not the perfect answer
- Be an Engineer and not a Scientist!
 - We should not be obsessing over millimetre differences between temporal patterns
 - Safety factor (freeboard)
 - Acknowledge or quantify the uncertainty and move on
 - Make a practical call on if the uncertainty is important

